旋转数组

题目

给定一个长度为 n 的整数数组 nums

假设 arrk 是数组 nums 顺时针旋转 k 个位置后的数组,我们定义 nums旋转函数 F 为:

  • F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]

返回 F(0), F(1), ..., F(n-1)中的最大值

生成的测试用例让答案符合 32 位 整数。

示例 1:

1
2
3
4
5
6
7
8
输入: nums = [4,3,2,6]
输出: 26
解释:
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。

示例 2:

1
2
输入: nums = [100]
输出: 0

提示:

  • n == nums.length
  • 1 <= n <= 105
  • -100 <= nums[i] <= 100

解答

暴力过不了,考虑求出递推公式

更一般地,当1≤k<n 时,有

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
int maxRotateFunction(vector<int>& nums) {
int f = 0, n = nums.size();
int numSum = accumulate(nums.begin(), nums.end(), 0);
for (int i = 0; i < n; i++) {
f += i * nums[i];
}
int res = f;
for (int i = n - 1; i > 0; i--) {
f += numSum - n * nums[i];
res = max(res, f);
}
return res;
}
};